Reg. No.:

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

SEM	CAT	EGOR	Y COMPONENT	COURSE CODE	COURSE TITLE	
III	PART - III		CORE - 7	P23MA307	COMPLEX ANALYSIS	
Date : 0	05.11.2	2024 / 1	FN T	ime : 3 hours	Maximum: 75 Marks	
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL Q</u> uestions.			
CO1	K1	1.	 Which of the following is true? a) Differentiability does not implies continuity b) Differentiability implies continuity c) Continuity implies differentiability d) There is no relation between continuity and differentiability 			
CO1	K2	2.	A function which is analy a) Harmonic function c) regular function	tic everywhere in a comple b) differentiable fu d) entire function	ex plane is known as notion	
CO2	K1	3.	The length of the circle we a) 2π b) $2\pi i$	with equation $z = z(t) = c$ c) $2\pi\rho$	$\alpha + \rho e^{it} 0 \le t \le 2\pi \text{is} \underline{\qquad}.$ d) $\pi \rho$	
CO2	K2	4.	An arc $z = z(t)$ is rectifiable a) bounded variation b)	e if and only if the real an unbounded variation c)	d imaginary parts of z(t) are of length of curve d) rectifiable	
CO3	K1	5.	Identify $n(-\gamma, a) = $ a) $n(\gamma, a)$ b) $- n(\gamma, a)$	$a) \qquad c) n(\gamma, -a)$	d) $n(-\gamma,-a)$	
CO3	K2	6.	The converse of Cauchy- i a) Euler's theorem b) Liou	ntegral theorem is aville's theorem c) Morera	's theorem d) Goursat's theorem	
CO4	K1	7.	A chain is aif a) cycle b) length	it can be represented as a c) arc	sum of closed curves. d) line	
CO4	K2	8.	The integral of an exact di a) zero c) two	ifferential over any cycle is b) one	s d) three	
CO5	K1	9.	Which one of the following a) $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$ c) $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 1$	g are Laplace equation b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ d) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$	$\frac{1}{2} = 0$	
CO5	K2	10.	The sum of two harmonic are again a) harmonic b) conju	functions and a constant	multiple of a harmonic function mology d) meromorphic	
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – B (</u> 5 X 5 = 25 Marks) Answer <u>ALL</u> Questions choosing either (a) or (b)			
CO1	K2	11a.	Elaborate the function u	$=x^2-y^2$ is conjugate hat (OR)	armonic .	
CO1	K2	11b.	If $\sum_{0}^{\infty} a_n$ converges, then a way that $ 1-z /(1- z)$	$f(z) = \sum_{0}^{\infty} a_n z^n$ tends to	f(1) as z approaches 1 in such	

CO2	K2	12a.	If f(z) is analytic in an open disk Δ then $\int f(z)dz = 0$ for every closed curve γ in Δ		
			γ γ		
			(OR)		
CO2	K2	12b.	Let γ be a differentiable curve given by $z=z(t)$ $(a \le t \le b)$.Let f(z) is a continuous		
			function on γ .then $\left \int_{\gamma} f dz \right \leq \int_{\gamma} f \cdot dz $.		
CO3	K3	13a.	State and prove of Lioville's theorem.		
			(OR)		
CO3	K3	13b.	Prove the Cauchy integral formula.		
CO4	K3	14a.	A region n is simply connected if and only if $n(\gamma, a) = 0$ for all cycles γ in Ω and		
			all points a which do not belong to Ω . (OR)		
CO4	K3	14b.	If f(z) is analytic and not equal to zero in a simply connected region Ω , then it is		
			possible to define single-valued analytic branches of log f(z) and $\sqrt[n]{f(x)}$ in Ω .		
CO5	K4	15a.	Let f(z) be analytic except for isolated singularities a_j in a region Ω		
			$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{j} n(\gamma, a_{j}) \operatorname{Res}_{z=a_{j}} f(z) \text{ for any cycle } \gamma \text{ which is homologous to zero in}$		
			Ω and does not pass through any of the points a_j		
			(OR)		
CO5	K4	15b.	If f(z) is meromorphic function in the region Ω with zero's a_j and the poles b_k then		
			$\frac{1}{2\pi i} \int \frac{f'(z)}{f(z)} dz = \sum_{j} n(\gamma, a_j) - \sum_{k} n(\gamma, b_k) \text{ for every cycle } \gamma \text{ which is homologous to}$		
			zero in Q and does not pass through any of the zeros or poles.		

Course Outcome	Bloom's K-level	Q. No	<u>SECTION – C (</u> 5 X 8 = 40 Marks) Answer <u>ALL Q</u> uestions choosing either (a) or (b)	
CO1	K4	16a.	Analyse the C-R equation with detail explanation. (OR)	
CO1	K4	16b.	Examine the state and prove of Lucas theorem.	
CO2	K5	17a.	Express the Cauchy theorem for a rectangle . (OR)	
CO2	K5	17b.	Prove that the line integral $\int_{\gamma} p dx + q dy$ defend in Ω , depends only on the end points of γ if and only if there exists a function U(x,y) in Ω with the partial derivatives $\frac{\partial U}{\partial x} = p, \frac{\partial U}{\partial y} = q$	
CO3	K5	18a.	State and establish the Cauchy higher derivatives formula (OR)	
CO3	K5	18b.	Establish the tailor series expansion .	
CO4	K5	19a.	State and prove Cauchy theorem. (OR)	
CO4	К5	19b.	If p dx+q dy is locally exact in Ω then $\int_{\gamma} p dx + q dy = 0$ for every cycle $\gamma \sim 0$ in Ω .	
CO5	K6	20a.	If u is harmonic in Ω then $f(z) = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$ is analytic (OR)	
CO5	K6	20b.	Analyse the mean value property	